If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=20=-4
We move all terms to the left:
x^2+10x-(20)=0
a = 1; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·1·(-20)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{5}}{2*1}=\frac{-10-6\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{5}}{2*1}=\frac{-10+6\sqrt{5}}{2} $
| v/3+5=2 | | 130+4x+6x=180 | | (0.5y/4)/9=(y+3)/8 | | 3.9=6.3x+7 | | -2x^2+948x=15000 | | 4u-u=-24 | | 1/9x-3=3 | | (3/4)n-23=34 | | .8x+7=13 | | 1.2x=173/9 | | 12=14(-6r-3) | | 1.2x=17/39 | | 15-4(x+6)-10=12 | | -4/5x+7=13 | | {1}{3}13(z+4)-6={2}{3}23(5-z) | | 16x-10-2-9x=20-17 | | 4(x+3)=-4* | | 75+8x+2+10x-5=180 | | 2w³+3w³=5w⁶ | | 186=57-w | | 2.5(n+4)=2n+0.5n+10 | | 9k÷12=-2 | | x+4/3+1/x=0 | | 3y+15=2y+8 | | 6x+7+6x-3+80=180 | | 2b-12=3b-21 | | 2z+2=3z-3 | | 0=5v•2 | | 2(y-60)=3(y-4)-y | | 59(g+18)=1/6g+3 | | 43/10-(22/5x+51/5=1/2(-33/5x+11/5) | | 2b+4=3b+6 |